Sandwiched SiO2@Ni@ZrO2 as a coke resistant nanocatalyst for dry reforming of methane
نویسندگان
چکیده
منابع مشابه
High Coke-Resistance Pt/Mg1-xNixO Catalyst for Dry Reforming of Methane
A highly active and stable nano structured Pt/Mg1-xNixO catalysts was developed by a simple co-precipitation method. The obtained Pt/Mg1-xNixO catalyst exhibited cubic structure nanocatalyst with a size of 50-80 nm and realized CH4 and CO2 conversions as high as 98% at 900°C with excellent stability in the dry reforming of methane. The characterization of catalyst was performed using various ki...
متن کاملInvestigation of the catalytic performance and coke formation of nanocrystalline Ni/SrO-Al2O3 catalyst in dry reforming of methane
In this study, nickel catalysts supported on mesoporous nanocrystalline gamma alumina promoted by various strontium contents were prepared by the impregnation method and employed in dry reforming of methane (DRM). The prepared catalysts were characterized using N2 adsorption (BET), temperature-programmed reduction and oxidation (TPR,) and oxidation (TPDTPO), X-ray diffraction (XRD), and scannin...
متن کاملDry Reforming of Methane Using Cold Plasma; Kinetic Model Study
In this work, the dry reforming of methane was studied using a corona and gliding discharge plasma microreactors. A chemical kinetic model was developed to describe the experimental behavior observed. The kinetic model is proposed based on the assumption that the reactant molecules CH4 or CO2 are attacked by active species produced b...
متن کاملElectrodeposited Re-promoted Ni foams as a catalyst for the dry reforming of methane
Article history: Received 11 October 2015 Received in revised form 2 December 2015 Accepted 15 December 2015 Available online 17 December 2015 The dry reforming of methane (DRM) utilizes carbon dioxide (CO2) as the oxidizing agent in order to produce synthesis gas. Catalyst deactivation via coking, oxidation, and sintering has stymied the industrialization of catalysts for the DRM. Here, we uti...
متن کاملCoke- and sintering-resistant monolithic catalysts derived from in situ supported hydrotalcite-like films on Al wires for dry reforming of methane.
Monolithic catalysts derived from in situ supported hydrotalcite-like films on Al wires display high resistance to coke formation and sintering in the dry reforming of methane due to their hierarchical porous structure, well dispersed metallic nickel species, more basic sites and strong metal-support interaction effect.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Catalysis B: Environmental
سال: 2019
ISSN: 0926-3373
DOI: 10.1016/j.apcatb.2019.05.021